Module 2: Algorithms, Basic Data Types, and Expressions
We introduce the concepts of algorithms, programs, and pseudocode. You will study variables, which are the basic constituents of programs, and four fundamental data types—integers, floating point numbers, characters, and Booleans—along with operators that are associated with each of these types. We consider three basic statements—assignment, input, and output. You will be given an opportunity to create and execute a program written in pseudocode (synthesis) and to try to figure out what a given piece of code does (analysis).
In this module we show examples in C++ of:
· declarations of int, float, char, and bool variables
· assignment statements
· input/output statements
[bookmark: II]II. Algorithms and Programs
In mathematics and computer science, an algorithm is a finite sequence of well-defined, computer-implementable instructions, typically to solve a class of problems or to perform a computation. Algorithms are unambiguous specifications for performing calculation, data processing, automated reasoning, and other tasks. In computing, every algorithm must have the following two properties:
1. Termination—An algorithm must terminate after a finite number of steps. It is not necessary to know the number of steps, and the number of steps could be huge, but termination must be guaranteed.
2. Clarity—Each step in an algorithm must be unambiguous.
Note than an algorithm itself does not have to be written in any particular programming language.
Programs, on the other hand, are written in a specific programming language. Think of an algorithm as an abstract concept and a program as its concrete realization.
Algorithms written in English or other natural languages can be ambiguous because of ambiguities inherent in natural language. Algorithms written in a particular programming language will certainly be more precise but will probably be harder to understand. A happy medium, and one that we will use throughout this course, is to use pseudocode. Pseudocode is English-like but also uses certain features of programming languages, such as keywords, and specific syntax for statements and expressions and so forth. When appropriate, we will show the actual program code that corresponds to the pseudocode, so that you can see for yourself that one can get quite easily to the former from the latter.
Flow charts are a visual aid to understanding how a program "flows" but are more suitable for explaining elementary constructs. They are used mostly for simple programs.
[bookmark: III]III. Components of Computer Programs
Computer programs, like well-written term papers, have a logical organization and include components that can be compared to those of a term paper. These components are
· identifiers (analogous to nouns)
· statements (sentences)
· function or class declarations (paragraphs)
· comments (footnotes, sidenotes)
We will now discuss two of the most important components, identifiers and variables (variables have no term-paper equivalent).
A. Identifiers
Identifiers are names given to various pieces of the program, including variables, constants, and functions. Think of an identifier as a name given to a certain memory location (or locations). Although we will be quite free in making up identifier names in pseudocode, most modern programming languages observe the following rules in creating identifiers.
· A name must begin with a letter of the alphabet and can thereafter contain either letters, digits, or the underscore (_) symbol. Note that blanks are not allowed in an identifier.
· Uppercase letters and lowercase letters are considered distinct from each other. Thus, CMIS102, cmis102, and Cmis102 all represent different identifiers.
· Identifiers can be quite long but some practical limitations may exist.
· Certain identifiers are reserved for special purposes and carry a special meaning. Such reserved words are called keywords of the programming language (e.g., if or class in C++), and they cannot be used as ordinary identifiers.
B. Variables
All programs contain variables. Think of a variable as a name of a location where the program can store some information. Because stored information can change, we use the term variable. A variable name is an identifier and therefore follows the rules for identifier names. For example, suppose we have a variable called age. A pictorial way for you to visualize this variable is as follows:
	age
		

The empty box is actually a memory location, whose name is "age."
[bookmark: IV]IV. Basic Data Types
Programs can manipulate different types of data, including numbers, letters, pictures, and sound. Each variable in a program can store data, and for simplicity, we will insist that a given variable can store only one kind of data. Thus, we associate each variable with a data type (i.e., the type of the data that can be stored in that variable).
To enhance the readability of a program, data types are usually announced early, before a variable is ever used. A more complex compiler or interpreter is necessary if data types are determined after a variable is used. In pseudocode, we will be rather relaxed about when we declare variables—this is after all, one of the perks that comes with using pseudocode! We will assume that the context of its use makes the type of each variable unambiguous. If we feel the need to be precise, however, we can explicitly declare variables as follows.
Declare i, j As Integer
The corresponding declaration in C++ is:
int i, j;
Most modern programming languages have certain fundamental data types built in, and we will study them in this section. The following diagram shows one way to visualize the hierarchy of the basic data types. There are other kinds of data, but we will not be concerned with them in this course.
Figure 2-3
Hierarchy of Basic Data Types
[image:]
Unstructured data types have no internal structure. For example, an integer or a character is a fundamental (i.e., atomic) entity, without any simpler parts. Some structured data types, such as arrays and structures, are composed of simpler parts that the program can manipulate. We will study only unstructured data types in this module. Structured data types (shown in orange) will be studied in module 4.
Unstructured data can be either numeric or nonnumeric in type, as you can see in the hierarchy. We will discuss two of the most important numeric types, integers and floating-point numbers, which are similar to scientific notation, and two of the most important nonnumeric types, characters and Boolean (or logical).
A. Numeric Types
Integers
Variables of the integer type (ints) are used whenever we want to store whole numbers. For example, we could use integer variables to represent the days of the week (1 to 7), the number of children in a family (fractional kids not allowed!), and so on. We can explicitly declare an integer in C++ as follows. Note the semicolon (;) at the end.
int day ;
Here are some key facts that pertain to the integer data type.
· Integers can be either positive, negative, or zero.
· In pseudocode, we will assume that there are no restrictions on the size of an integer. In a real program, however, an integer will be stored within a specified number of bits (e.g., 4 bytes = 32 bits). Restricting the amount of memory that is used to store an integer automatically restricts the size of the integer.
· The representation of an integer is precise—the integer is represented exactly by the code.
Floating Point Numbers
Variables of the floating point type (floats) are used to store number with a fractional part, for example, a current checkbook balance or the miles-per-gallon performance of a car.
A typical declaration of a float variable in C++ or Java is:
float current_balance ;
Here are some key facts that pertain to the floating point data type.
· Floating point numbers have a much greater range than ints.
· Floating point numbers may not be able to precisely represent some numbers (for example, the finite decimal representation of 1/3).
· We will assume in pseudocode that floats have no size restrictions. As with ints, in a real program, floats are stored using a specific number of bits (e.g., 4 bytes), and the range of floats that can be stored in this space is limited.
· Floating point numbers are represented internally by a code that contains two parts, the mantissa and the exponent.
B. Nonnumeric Types
Characters
Often abbreviated as char, characters are used to store information that is nonnumeric, for example, a person's middle initial ('S'), or a person's gender ('M' or 'F'). Many languages give a special name—character string—to a data type that contains many characters (for example, a person's last name).
A typical declaration of a char variable, gender, in C++ or Java is
char gender ;
Here are some important facts about the char data type.
· Single quotes are used to represent characters ('A').
· char '1' is different from int 1 because they have different internal representations!
· Several different codes have been used to represent characters. The earlier codes, ASCII and EBCDIC, each used 1 byte and were mostly concerned with representing the characters that may be found on a common computer keyboard. But a modern code like UNICODE, which uses 2 bytes, is much more expansive in scope, and can be used to represent symbols from most of the languages of the world.
Booleans
Named in honor of George Boole (see module 1), the Boolean type (bool) is used to represent quantities that can take only the values true or false. Boolean variables occur frequently in programs in conditional and loop statements, which we will study in module 3. They are also used in programs that ask "yes/no" questions, for example, "Were you ever married?"
A typical declaration of a bool variable, married, in C++ is
bool married ;
Here are some useful facts about the Boolean data type.
· Some languages (e.g., C) do not treat the Boolean type as a separate type. True and false are often represented by the integers 1 and 0. Java and C++ do (rightly) treat Boolean as a separate type.
· true and false are keywords in languages that have a built-in Boolean type.
· Boolean values are usually represented using one byte.
[bookmark: V]V. Operators
Each data type is usually associated with specific operators, so certain operators can be used only with variables that are of a certain data type. However, most programming languages typically allow integers and floating point numbers (i.e., the numeric types) to be mixed together in simple expressions. The type of an expression is derived from the types of the variables involved in the expression.
Operators perform simple computations on variables. By combining variables and constants with operators, one obtains expressions. Expressions could themselves be made up of sub-expressions. For example, the expression
(x +10) * (u + v)
contains the two sub-expressions (x +10) and (u + v).
We have already seen that the sizes of ints and floats are limited by the amount of memory that is given to storing data of these types. In creating expressions, you should be aware that it is possible for each of the components of the expression to be within these limits but for the value of the entire expression to exceed the limits.
A. Arithmetic Operators (used with both ints and floats)
Arithmetic operators are used with ints or floats and are grouped as follows (we assume that x, y, and z can be either ints or floats, except while discussing the % operator, where we assume that both x and y are positive ints).
Additive Operators
The additive operators are shown in the table below.
	operator
	operation
	example

	+
	 addition
	x + y

	+
	 sign (unary operator)
	+ y

	–
	 subtraction
	x – y

	–
	 sign (unary operator)
	– y

When + or – is used with two operands (e.g., x + y), it is referred to as a binary operator. When + or – is used with one operand (e.g., – y), it is referred to as a unary operator. In all cases, the operators carry the familiar arithmetic meanings.
Multiplicative Operators
The multiplicative operators are shown in the table below.
	operator
	operation
	example

	*
	 multiplication
	x * y

	/
	 division
	x / y

	%
	 integer remainder
	x % y

	
	
	

In most cases, the multiplication and division operators work as expected, but in certain programming languages, e.g., C++, you should be aware that multiplying or dividing two quantities of the same kind will also produce a result of the same type. Thus, for example, (1 / 2) will yield the result 0 (rather than 0.5). Because both 1 and 2 are integers, and the division performed is an integer division, only the integer part of the actual answer is retained—the decimal part is dropped.
This binary operator %, sometimes called the modulus or remainder operator, is usually used with positive integers. (x % y) represents the integer remainder that is left over after dividing x by y.
For example, (27 % 4) = 3 because if you divide 27 by 4, the remainder is 3. That is:
27 = 4 * 6 + 3
Similarly, (42 % 6) = 0 because 6 divides 42 evenly. That is:
42 = 6 * 7 + 0
Mixing Arithmetic Operators
As in elementary algebra, we can mix the arithmetic operators and build complex expressions. Parentheses are used to denote groupings (i.e., which operations should be performed first).
(x + y) * (u + v)
is different from
x + y * u + v
Though using parentheses is safe, writing too many parentheses can be cumbersome and can make an expression difficult to read.
Most programming languages use the two rules of associativity and precedence (also used in algebra) to avoid using too many parentheses.
Associativity is used to decide the order of operations in expressions where the operators are all of the same kind—either all multiplication or all division. The operators
+, –, * , /, %
are all left associative. Thus,
x + y – z (written without using any parentheses)
is interpreted and executed as
((x + y) – z)
Note that the leftmost operation is done first. Similarly,
x * y / z
is interpreted as
((x * y) / z)
Note that the first example has only additive operators, and the second example involves only multiplicative operators.
Associativity deserves special attention!
Precedence is used to decide the order of operations when expressions contain different operators. In this case, evaluate expressions in the following order.
1. Evaluate expressions inside parentheses.
2. Evaluate exponents.
3. Evaluate multiplications and divisions (use associativity within this step).
4. Evaluate additions and subtractions (use associativity within this step).
[bookmark: _GoBack]You must always use parentheses if you intend a sequence of operations that differs from that which follows from these rules.
Thus, for example, here is how x ^ 2 ^ 3 + (3 + y) / z % 2 is evaluated.
B. Logical Operators
Logical operators are used with variables of the Boolean type. Each operand must be either a Boolean variable itself, or an expression that evaluates to a Boolean answer. In this section, we assume that x and y are variables of the Boolean type.
Negation Operator
Negation is a unary operator.
The behavior of the ! operator is explained by the following table:
	x
	 ! x

	true
	 false

	false
	 true

Thus, if x is true, !x is false, and vice versa.
AND Operator
AND is a binary operator and is denoted by the && symbol.
The behavior of this operator is explained by the following table:
	x
	y
	x && y

	false
	false
	false

	false
	true
	false

	true
	false
	false

	true
	true
	true

Thus, (x && y) is true only if both x and y are true.
OR Operator
OR is also a binary operator and is denoted by the symbol ||, which is two adjacent pipe symbols (either | or ¦ , depending on your specific keyboard).
This operator works as follows:
	x
	y
	x || y

	false
	false
	false

	false
	true
	true

	true
	false
	true

	true
	true
	true

In other words, (x || y) is true if x is true or y is true or both are true.
Precedences and Associativities in Logical Operators
Just as with the arithmetic operators, associativity and precedence rules are used to simplify writing Boolean expressions. ANDs and ORs have left-to-right associativity (like + and –), whereas NOT has right-to-left associativity (like ^). In evaluating expressions, things inside parentheses are evaluated first, followed by NOTs, followed by ANDs, and finally followed by ORs.
Take a few minutes to ensure that you have understood these rules, and then test your understanding by showing how to evaluate the Boolean expression w && !(x || y && z). Boolean operators are discussed in more detail in a course dealing with discrete mathematics.
C. Relational Operators
These operators can generally be used to compare any two quantities that are of the same type (i.e., they can be used between two integers, two chars, and so on), and they always produce a Boolean result. In this section, we assume that x and y must both be of the same type, but this type itself could be any of the types we have considered. Most languages will allow ints and floats to be combined with relational operators, but this liberty should still be exercised with care.
There are six relational operators—equality, inequality, and four relative size operators. We will discuss each of these below.
Equality Operator
	operator
	example

	==
	x == y

The equality operator is denoted by two = signs, with no spaces between them. The reason for using two = symbols will become clearer later in this module.
The expression x == y evaluates to true if x and y are equal to each other. For example, if x and y are both int variables, and both happen to contain the number 5, then (x == y) would evaluate to true. Likewise, if p and q are Boolean variables, and if p happens to be true, while q happens to be false, then (p == q) would evaluate to false.
Note that we used the == operator once with two ints and then with two bools, and in both cases, we obtain a Boolean (i.e., true/false) answer.
Inequality Operator
	operator
	example

	!=
	x != y

Note how the not operator (!) is followed by the =, so that this operator literally stands for "not equals," and the pair of symbols forms a single operator.
The expression x != y evaluates to true if x and y are of the same type but are not equal. Thus for example, (5 != –3) evaluates to true.
Relative Size Operators
	 operator
	 operation
	 example

	 >
	 greater than
	 x > y

	 >=
	 greater than or equal to
	 x >= y

	 <
	 less than
	 x < y

	 <=
	 less than or equal to
	 x <= y

These operators are usually used with numeric quantities and correspond to the familiar mathematical inequalities. Many languages also permit these operators to be used with the char data type. When this is allowed, the order in which characters appear in the defining code (the so-called collating sequence) is used to determine relative size.
For example, in the ASCII code for representing chars, all the uppercase letters appear before the lowercase letters, and within each case, the letters appear in normal alphabetical order:
A, B, C, … Z, a, b, c, …z
Thus, in ASCII, ('A' > 'a') would evaluate to false, whereas ('C' < 'a') would evaluate to true. Note that we have used single quotes to represent chars.
[bookmark: VI]VI. Statements
We have already seen how to evaluate expressions that involve variables. But how did the variables come to have values in the first place? We will study two important mechanisms, the assignment statement and the input statement, which may be used to give values to variables.
Statements are perhaps the most interesting (and exciting!) elements in a program. In many programming languages, statements are where are all the action is! A computer executes programs by executing statements in sequence, one after the other. In the simple programs that we will encounter in this module, the order in which we write the code (or pseudocode) also defines the order in which the statements will be executed. In module 3, we will encounter statements that alter this so-called "sequential flow."
At this point, some of you may wonder how a statement differs from an expression.
There are two major types of statements: non-executable statements and executable statements.
Examples of non-executable statements include declarations of variable types, compiler directives (instructions to the compiler), and so on. With such statements, the compiler does not generate code that actually performs an action. However, the compiler may effect other types of actions, for example, declaration statements cause memory to be set aside for variables. We have already seen examples of declarative statements in the discussion of how variables are declared (in section IV).
Executable statements, on the other hand, cause an action to be performed when the code executes. In this module, we will study three basic statements—assignment, input, and output statements.
A. Assignment Statement
This is perhaps the simplest, yet most important, executable statement. In pseudocode, it has the form:
Set variable = expression
The word set is a keyword in our pseudocode language. In programming languages such as C++ or Java, the syntax is even simpler:
variable = expression ;
Semicolons
Note the presence of the semicolon (;). Languages like C++ and Java use a semicolon to mark the end of a statement (including declarative statements for variables). A missed semicolon is a frequent source of compile-time errors in these languages. (Our pseudocode does not use any such terminating punctuation.)
How the Assignment Statement Works
It is crucial that you understand clearly how the assignment statement works, which is as follows, in two distinct steps.
1. First, evaluate the expression that appears on the right side of the =, using the current values of any variables.
2. Then store the value resulting from the evaluation in the variable whose name appears on the left side. The left-hand side must clearly be a valid variable (i.e., memory location).
You should realize the following two very important facts about the assignment statement.
1. If there are any variables in the expression on the right side of an assignment statement, their values are not changed in step 1—only their current values are used.
2. The value stored in the variable whose name appears on the left side of the assignment will probably change as a result of an assignment statement.
Suppose we had a variable called age, and supposed we assigned the value 28 to it. The result of this assignment could be shown pictorially as follows:
Before assignment statement is processed
	age
		

	Before the assignment, the variable age contains no information, which is actually the state of affairs when any variable is first declared.

After assignment statement Set age = 28 is processed
	age
		28

	The memory location whose "name" is age now contains 28.

Stop now and try to think of an assignment statement that leaves the current value of a variable called x unchanged.
In computer programming, the following special assignment statements are common:
· Set x = x + 1

This is called the increment statement and results in the value stored in x being increased by 1.
· Set x = x – 1
This is called the decrement statement and results in the value stored in x being decreased by 1.
Do not confuse the equals (=) in an assignment statement with the mathematical equal sign. In mathematics, neither of the statements
x = x + 1 nor x = x – 1
would ever be valid! Do you know now why we use == to represent the equality operator?
Be very careful to differentiate the assignment statement, which has only one = symbol, from the Boolean equality operator (==), which has two adjacent = symbols. Using one when the other is intended is a common programming mistake in Java and C++.
Because understanding assignment statements is so critical, you should now test your understanding of assignment statements.
B. Input and Output Statements
Input statements are needed to submit data to a program, and output statements are needed for a program to display any results that the program might have produced.
In pseudocode, we just write
Input x
for an input statement that reads a value into variable x. The value being read would be something the user would presumably type in.
An output statement in pseudocode is
Output x
This statement would cause the current value of variable x to be printed out.
Both of these pseudocode statements conceal a lot of complexity. For example, looking at the simple output statement above, we would expect the correct value of x to be displayed, regardless of whether x is a variable whose type is float, int, char, or bool!
Languages such as C++ and Java have many different kinds of input and output statements. These statements allow us to produce formatted outputs (e.g., having a specified number of digits after the decimal) or to read input from different sources such as the keyboard or other data files. Here are simple input/output statements in C++.
	cin >> x ;
	This is a read statement in C++. It reads into the variable x what the user types at the keyboard. The user will presumably type in something that is appropriate to the type of x.

	cout << x ;
	This is an output statement in C++. The current value of x will be written on the monitor.

[bookmark: VII]VII. Coding Errors
Coding errors are sometimes called bugs. Although bugs is a quintessentially software-related term, there is actually a hardware origin of the term bugs.
At the highest level, we can divide all coding errors into two categories:
1. compile-time errors
2. run-time errors
Run-time errors are hard to detect and can sometimes cause serious side effects such as accidental deletions of information. One of the elusive goals of software engineering is to be able to detect as many errors as possible at compile time, before the program has run.
[bookmark: VIII]VIII. Comments
Although programs can be harder to read than algorithms written in pseudocode, by using comments, one can make a program easier to understand. A comment attempts to explain some piece of code to a person reading the code but it is ignored by the compiler itself.
Comments are usually placed on the same line as the code or just before a line of code. A block comment is usually placed at the head of a program, giving a broad overview of the program itself.
You can specify comments in either of the following ways.
1. Type in short comments after two slashes (//). Such comments cannot extend past the end of the line. For example:
int number_children ; // number of children in the family
2. Longer comments, which span a single line or multiple lines, may be placed between a starting /* and an ending */. There are no spaces between the / and the * and between the * and the /. For example:
/* compute the circumference of the circle */
or
/* The following loop counts the number of non-zero
 elements in the array */
The template provided for the programming exercise in this module contains both types of comments. Study them carefully. We will include comments in these forms in our pseudocode. We will have more to say about comments in module 5.

image1.gif
ﬂﬁ-—-

